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model that does not contradict the results. For sapphire 
this could be the 3-level system given in Fig. 7. 

At room temperature, both the ordinary as well as 
the photoconductivity result from electrons lifted from 
the occupied impurity level to the empty conduction 
band. This would explain why the light had no influence 
on the mobility measured in the Hall experiment. 

Low mobilities are expected in ionic crystals,6 but the 
measured 0.05 cm2 V sec is quite low. 

The large gap distance in the model is given in the 
literature7 and the 0.85 to 1.1 eV gap comes from 
photoconductivity measurements as a function of light 
frequency. To have enough intensity we had to use 
broad-band infrared filters resulting of course in loss of 
structure details if present. 

6 R. H. Bube, Photoconductivity of Solids (John Wiley & Sons, 
Inc., New York, 1960), p. 256. 

7 N. B. Hannay, Semiconductors (Reinhold Publishing Corpora
tion, New York, 1959), p. 54. 

INTRODUCTION 

IN contrast with the rich development of the theory 
of irreversible processes in many body systems1-3 

(gases, plasmas, solids) there is a relative paucity of 
fundamental work in the field of spin-spin relaxation of 
paramagnetic substances. The difficulties in this domain 
follow from the peculiar structure of the Hamiltonian. 
The results of the general theory cannot directly be ap
plied to this particular problem because one does not 
know the properties of the unperturbed Hamiltonian. 
One has to go formally ahead, working in an unknown 
representation. If the final expression can be written as 
traces, they may then be evaluated following Van Vleck. 
Let us also note that in many situations, series expan
sions may be used in the powers of the ratios of local 

1 1 . Prigogine, Nonequilibrium Statistical Mechanics (Inter-
science Publishers, Inc., New York, 1962). 

2 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
3 L. Van Hove, Physica 21, 512 (1955); 23, 441 (1957). 

To check these gap values we plotted lno- versus T~x. 
For this we used ordinary high-temperature conductivity 
values of sapphire published by the Linde Company 
completed with the room-temperature value of our 
sample. The high-temperature slope of the curve leads 
to a gap of 7 eV; the low-temperature slope to a gap of 
0.6 to 1.2 eV in fairly good agreement with the value 
given before. The spread depends on the kind of model 
assumed.8 
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8 A. J. Dekker, Solid State Physics (Prentice Hall, Inc., Engle-
wood Cliffs, New Jersey, 1959), p. 314. 

magnetic field over external field Hi/Ho and hoo/kT, a 
level splitting over the thermal energy. These expan
sions greatly simplify the problems. A general treatment 
has been given by Caspers,4 starting from the expres
sions given by Kubo and Tomita to calculate the spin-
spin relaxation time. An important progress in under
standing the spin-spin relaxation mechanism has re
cently been made with the introduction of the notion 
of Zeeman and dipole-dipole temperatures by Anderson, 
Hartmann,5 and Provotoroff.6 As shown by Jeener7 

several problems are then easily handled using thermo-
dynamical methods. However, a justification of these 
notions from first principle has not yet been given. In 

4 W. J. Caspers, Physica 26, 778 (1960). 
5 A. G. Anderson and S. R. Hartmann, Magnetic and Electric 

Resonance and Relaxation, edited by J. Smidt (North-Holland 
Publishing Company, Amsterdam, 1963). 

6 B . N. Provotoroff, Zh. Eksperim. i Teor. Fiz. 42, 882 (1962) 
[translation: Soviet Phys.—JETP 15, 611 (1962)]. 

7 J. Jeener, following paper, Phys. Rev. 133, A478 (1964). 

P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 2A 20 J A N U A R Y 1964 

Spin-Spin Relaxation and Spin Temperatures 
JEAN PHILIPPOT 

Universite Libre de Bruxelles, Brussels, Belgium 
(Received 2 August 1963) 

The equilibrium and nonequilibrium properties of an assembly of interacting spins are analyzed in the 
case of paramagnetism (nuclear). The evolution towards equilibrium is described by a generalized Pauli 
equation. This equation contains two relaxation times: a first one characterizing the evolution of the dipole-
dipole system to equilibrium and a second one describing the energy exchange between the dipole-dipole and 
the Zeeman system. The real temperature of the system is the dipole-dipole one whereas the state of the 
Zeeman system is given by a "chemical potential" fixing the mean magnetic moment. It is shown that the 
Zeeman dipole-dipole relaxation may also be considered as a kind of Brownian motion problem of a collective 
Zeeman coordinate in the "dipole-dipole heat bath." 
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this note we show that whereas the state of the dipole-
dipole system is described by a true temperature, the 
state of the Zeeman system, i.e., the macroscopic mag
netic moment, is given by the value of a quantity having 
the properties of a chemical potential. The dynamics of 
the evolution towards equilibrium is governed by a 
generalized Pauli equation. Four characteristic times 
appear in the phenomena: the "collision time" of the 
order of the inverse of the linewidth, the dipole-dipole, 
the Zeeman dipole-dipole, and the spin lattice relaxation 
time. Here, the last one is supposed to be much larger 
than all the others. It is also shown that the total mag
netic moment plays the role of a collective coordinate 
coupled with the dipole-dipole system and that the 
Zeeman dipole-dipole relaxation may be considered as a 
kind of Brownian motion problem for which equations 
related to the Bloch equation8 are set up. 

A. EQUILIBRIUM PROPERTIES 

Hamiltonian 

The Hamiltonian of a rigid lattice of interacting spins, 
placed in a large constant external field HQ directed along 
z, may be written as 

^ = "^ZeemanT^interaction j v * l / 

with 
5CZ= -HQMZ= - (CO0/T)M2 , (A2) 

where H0 is the constant external field along z, m the 
Larmor frequency, y the gyromagnetic ratio, Mz the z 
component of the total magnetic moment, and Sz the z 
component of the total angular moment. We denote by 
Ij the spin vector of the particle located at ry and use 
the operators 

*/=&)., //tl=ai).±»ay)». (A3) 
They satisfy the commutation rules 

C W * T ] = ( - 1)X + T(X-r)I^8 j k , (X, T =0 , ± 1). (A4) 

We choose an interaction Hamiltonian of the form 

3 C ; = E X ; Q W ^ T . (A5) 
3<k X,r 

A particular example is given by the dipole-dipole 
coupling, then 

3C<=£ ^V[^ - 3 ( I r ^ ) -3^ - 5 ( ^ - Iy ) ( r i f c . I f c ) ] . (A6) 

3<k 

We shall introduce also the operators 

V^= E E C y W / * ^ , . . (A7) 

j<k X ,T 

They obey the following commutation rules 

£S„VM]=shVM. (A8) 

Thus V(s) acting on an eigenstate of 3C# with total 
8 F. Bloch, Phys. Rev. 102, 104 (1956); 105, 1206 (1957). 

angular moment Mfi gives a new eigenstate with 
moment (ll+s)h. The total Hamiltonian is 

X=5Cz+ E V^K (A9) 
s=0,rfcl,±2 

Since the Zeeman Hamiltonian 3Cz commutes with Fc0) 

these two operators may be simultaneously diagonalized. 
We, therefore, introduce as basis vectors the eigenstates 
| M,n) satisfying the equations 

Wz\M,n)=Mha)o\M,n), 

V«»\M,n)=Eutn\M9n). 

M is either an integer or a half integer, n stands for all 
the quantum numbers needed to define the correspond
ing eigenstate. 

Zeeman and Dipole Temperatures, the Total 
Magnetic Moment as a Collective 

Coordinate 

Anderson and Hartmann have shown that several 
experiments could be interpreted if one admits that the 
system is represented by a density matrix of the form 

P=Cexp(-/5z3C^-foF»))]/a. (All) 

This raises two questions. The first one concerns the 
stationarity of such states. We shall see in Part B that 
these states are metastable because the V{s) terms of 
the Hamiltonian induce transitions between the eigen
states of 3Cz-\rV(0) with the consequence that the 
Zeeman energy is no longer an invariant of the motion. 
The second question concerns the separation of the un
perturbed Hamiltonian 3Cz+F(0) in two parts and the 
interpretation of kfiz~l and ^zT 1 as temperatures of 
two subsystems. This last problem shall be analyzed 
presently. Under what conditions is it justified to speak 
of two temperatures, a Zeeman temperature and a 
dipole-dipole temperature to characterize such a meta
stable state? Generally speaking, the commutability 
condition of 0Cz and F(0) is not a sufficient one. It is 
furthermore necessary that the two Hamiltonians should 
be independent, that is, the same variables may not 
appear in both. The two Hilbert spaces spanned by the 
eigenvectors should be different. The eigenstates are 
then characterized by different quantum numbers so 
that it becomes possible to define reduced density 
matrices by taking partial traces over one of the sub
systems. The situation is here analogous to the one 
studied by Tomonaga9 for collective coordinates. Adopt
ing this viewpoint, one sees that the total magnetic 
moment is a collective coordinate. However, this 
coordinate cannot be disentangled from the other in
ternal ones which appear in the dipole-dipole Hamil
tonian. Let us clarify this by writing the Fourier trans
formation that is performed to introduce a spin wave 

9 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 13, 467 (1955). 
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description if the spins are localized on a regular lattice. 

/ q X = ^ - l / 2 ^ ^ q . r / / y X . ( A 1 2 ) 

0 

The q runs over the first Brillouin zone of crystal. The 
7q

x forms a complete set of commuting operators associ
ated with collective coordinates. With this new system 
we can easily study the interdependence of the spin-spin 
and Zeeman systems. The total angular moment is, 
then, I0°(N)112. On the other hand, the operator F(0) 

may be expressed as a function of the complete set 
{7q

x} including 70
0. The problem is then to study under 

what conditions the terms in 7o° of the dipole-dipole 
Hamiltonian Vm may be neglected, or when the sub-
spaces | M,n) with different given M may be considered 
identical. Therefore, we express a typical term of V(0) 

as a function of the 7q
x 

E h*IiTCu*T(n-ri) 
k<l 

= L I /q
x/-q 'exp(iq.r t t)Cx*(ra). (A13) 

a q 

Tk, *i are the position vectors of spins k and Z, and 
ra=tk—th The eigenvalues of the Iix are of order one 
and, therefore, in the absence of very special phase 
correlations the 7q

x are also of order one, except Jo0 which 
is of order N+/(N)112, N+ being the excess of up spins. 
The relative contribution of the collective Zeeman 
coordinate in V{0) is thus (N+/N)2, and may be neglected 
in the determination of thermodynamical properties 
when (N+/N)2<&1. This is the usual situation in para
magnetism, it supposes that ho)o/kT<^l. This approxi
mation is, therefore, typical of high temperatures. The 
energy is, thus, the sum of two quasi-independent 
contributions, the Zeeman energy and the dipole-dipole 
energy. We may also say that the separation of the 
Zeeman collective coordinate from the other degrees of 
freedom of the dipole-dipole system applies when 
N+/N<^.1, because then most of the dipole-dipole energy 
is in fluctuations. It does not apply when N+/N =0(1) 
because most of the dipole-dipole energy is then in the 
Weiss field. However, let us remark that the partition 
function (we now consider the case PZ=PD=P) 

Z = E exp(-j83Cz)E exp(-/3F<0)) 
M n 

does not factorize because the number of terms in the 
summation over n still depends on M. As a result, the 
thermodynamical quantities, for instance the entropy 
and the energy, are in general not sums of independent 
contributions coming from two subsystems. This is a 
first aspect of the problem where we emphasized the 
role of the total magnetization as a collective coordinate. 
In the following section we shall develop another aspect 
of the same problem: when a system has several 
invariants of the motion, how can we know whether 
they are independent or not? 

Thermodynamical Aspect 

The problem is to develop the statistical thermo
dynamics of systems with two invariants of the motion: 
the total energy and the total magnetic moment. A 
first method consists in starting from the relation 
F=—kT InZ, where the sum over states is restricted to 
the subspace of given M. To avoid the difficulty of tak
ing partial traces we note that the situation is completely 
similar to that of a system with a given number of 
particles. The total number of particles and the total 
magnetic moment are operators with a discret spectrum 
playing the same role. We shall, therefore, use a method 
analogous to that of the grand canonical ensemble and 
consider a Gibbs ensemble of systems characterized by 
the density matrix 

lOM,n;M,n=exp(— q+vM—PEM,n) . ( A 14) 

The multiplier v is.fixed by the condition that M the 
mean, value of M, is given. The normalization deter
mines the potential 

2= In Tr expOM-0F ( o )). (A15) 

Our ensemble is thus representative of a metastable 
system. Such a system will evolve to the complete 
equilibrium only when the effect of the perturbation 
terms V(8\ (s^O) becomes important. The mean 
angular moment (in units ft) and the mean dipole-
dipole energy are given by 

M=dq/dv, ED=-(dq/dp). (A16) 

In the high-temperature, low-magnetic-moment limit, 
one gets for the q potential the expression 

q=Tr[^p2V^+\v2M2+ • • - ] /Tr l . (A17) 

Dipole-dipole energy and angular moment are given by 

E»= - (dq/dp) = -p Tr(F«»2)/Trl, 

M = dq/dv= v Tr(M2)/Trl. 

It is only in this limiting case that ED is a linear function 
of p and M a linear function of v. The easiest way of 
seeing that P and v are independent in this case consists 
in remarking that the first terms of the Taylor expansion 
of (A 14) are also the first terms of an expansion of p in 
orthogonal operators as used by Fano,10 since Tr[VW] 
= 0. 8 and v are coefficients of this expansion and may 
therefore be chosen independently. The total energy is 

Et—E&-\-Ez 
= 1-0 Tr(V^)-vfkc0 Tr (Af2)]/Trl, (A19) 

10 U. Fano, Rev. Mod. Phys. I l l , 689 (1958). 



A474 J E A N P H I L I P P O T 

and the entropy is (for spins /) 

S= -k Tr(p lnp) = Sm^+SD+Sz 

= Nk\n(2I+l) 
-k[& Tr(V^2)+v2 Tr(ikf2)]/2 Tr l . (A20) 

From this, we can evaluate the potential 

/i= (dEt/dM)s=*fca*-v/p. (A21) 

The fact that energy and entropy are sums allows us, 
in this high-temperature low-magnetic-moment limit, 
to define a Zeeman temperature. One has 

(dS/dED)= (dS/dEt)M= l / r = 1/TD, 

dS/dEz=l/Tz=kv/ha>o. 

There is, thus, a simple relation between v and the 
"Zeeman temperature" 

v= fio)0/kTz=M Tr(l)/Tr(Af2). (A23) 

In conclusion one may say that there is only one tem
perature, which is the dipole-dipole one, whereas the 
state of the Zeeman system is described by a multiplier 
v related to a chemical potential.11 However, it is 
possible to replace this quantity by a Zeeman tempera
ture in the limit considered and as a result of the peculiar 
properties of the Hamiltonian. This is actually a simple 
illustration of the fact that equilibrium conditions be
tween subsystems are given by an equality of tempera
ture when the Hamiltonian is the only invariant. When
ever, besides the Hamiltonian, there exists another 
analytical invariant, the equilibrium is determined by 
a relation between the corresponding Lagrange multi
pliers. We shall see in Sec. B that the cross-relaxation 
phenomena furnish a beautiful example of this rule. 

where pd(t) is the diagonal part of the density matrix 

P'M = £ | A > < * I P ( 0 | * X * | . (B2) 
k 

The Hamiltonian has been written 3C=3Co+XF, the 
\k) are the eigenstates of 3C0 and V(t) is the interac-

11 The chemical potentials introduced by E. A. Desloge and 
W. A. Barker [Phys. Rev. 108, 924 (1957)] correspond to a de
scription in terms of the Zeeman states of individual spins and 
these authors introduce only one temperature which is the lattice 
temperature. In the case of the solids with spin-spin interaction 
considered here, the spin system has a continuous energy spectrum 
and the state of individual spins are not invariants of the motion 
with our unperturbed Hamiltonian. One has a chemical potential 
not for each Zeeman state of a single spin, but for each spin species. 
The temperature introduced here is that of the spin system. 

B. DYNAMICS OF THE EVOLUTION 
TOWARDS EQUILIBRIUM 

We now take into account the F u ) terms (s^O), 
which cause, besides a shift of the levels, a coupling of 
the collective coordinate 70° with the dipole-dipole 
system. This plays the role of heat bath, (in the sense 
that it is a many-body system rapidly reaching its 
equilibrium state) with the peculiar situation that the 
largest part of the specific heat is carried by the single 
Zeeman collective coordinate. As a result, the tempera
ture of the "dipole-dipole heat bath" varies when 
brought in thermal contact with the Zeeman system. 
For initial distributions of the types (A14) the de
struction of the magnetic moment as analytical in
variant may be described in the high-temperature limit 
as an evolution of two subsystems to a common thermal 
equilibrium. We shall first set up a Pauli equation for 
the complete system in order to study the approach 
towards equilibrium. The treatment we present here 
differs from previous ones by the explicit introduction 
of the representation with basis vectors | M,n). It gives, 
therefore, a deeper physical understanding of the time 
evolution mechanism. It shows the necessity of extend
ing the calculations to the fourth order in the perturba
tion and introduces the concept of a dipole-dipole re
laxation time, which is the basis of the dynamical justi
fication of the equilibrium considerations of Sec. A. 

Master Equation for Interacting Spins Systems 

It has been established, that under very general condi
tions, the time evolution of a large system with a con
tinuous energy spectrum is governed by a non-
Markovian master equation.1'12 Neglecting temporarily 
the contribution from the nondiagonal elements of p at 
time zero, the diagonal elements of p satisfy13 

tion representation of V, 

V (t) = exp (iWW/h) V exp (-i3C0t/h). (B3) 

The subscript d i indicates that no intermediate states 
should be represented by a diagonal element of p. This 
is precisely the condition to be fulfilled in order to get 
one and one single / factor in the formal solution for 
p(/).14 One then recognizes in the right-hand side the 
time derivative of this formal solution. In applying this 

12 P. Resibois, Physica 29, 721 (1963). 
13 We use the two notations pk,k— {k|p|k). 
14 For further details concerning the general theory of irreversible 

processes, see Refs. 1 and 12, 

dt(k\p(t)\k)= dr E ( - ) / dry-I drm-2 

X(k\[V(r), [7(r0, [• • -LV(r^), [7(0), p ^ - r ) ] - • .]|*>«J , (Bl) 
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general formalism to our problem we put 

3e0=3ez+7<°>, X F = I F W . (B4) 

The eigenstates of the unperturbed Hamiltonian are 
denoted by \M,n). We do not know these eigenstates. 
Nevertheless, we shall perform the calculations formally, 
assuming that an occupation number representation 
with continuous wave vectors exists. This hypothesis 
which is already implicitly assumed in Van Vleck's 
work,15 is necessary for any theory of this kind. The 
expressions we obtain may afterwards be used to calcu
late traces which can be evaluated in any representation. 

We now proceed to evaluate the kernel of this integral 
equation up to the terms in X4. Going then to the limit 
£$>TC, that is, considering the collisions as instantane
ous, we derive a generalized Pauli equation. The collision 
time re which appears here is of the order of the inverse 
of the linewidth Aco. This follows from the fact that the 
usual asymptotic formula, 

lim jda>[ / ( c o ) ^ ^ = 2 7 r r / ( 0 ) , (B5) 

may be applied as soon as r^>(Aco)~1, Aa> being the 
frequency interval over which /(co) varies appreciably. 

Collision Operator 

(a) Terms in X2: They correspond to transitions 
A f ^ M z t l and M^±Mzh2. These are the usual 
second-order transition probabilities. They describe an 
energy transfer between the Zeeman coordinate and 
the dipole-dipole system and become more and more 
important for low fields. They are 

2TT 

- | ( E ^ w ) i , ; F y | 2 

fl s 

X8tEM,n-EM>,n>+(Mf-M)]ia>o]. (B6) 

(b) Terms in X3: They also correspond to an energy 
exchange between the Zeeman and the dipole-dipole 
system. Since they are in a higher order in X and describ
ing the same processes as the previous terms, we shall 
neglect them. 

(c) Terms in X4: There are two types of such terms. 
Those describing an energy exchange between the two 
subsystems and those bringing the dipole-dipole system 
towards equilibrium. The first class of processes is 
neglected for the same reason as in (b) and we proceed 
to calculate the second class. The different contributions 
may be classified using the diagrams introduced by 
Fujita.16 However, it turns out that in the case of high 

15 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
16 S. Fujita, Physica 28, 281 (1962). 

fields one may simply take the square of the S matrix 

—8CEif ,n-£tf .n ' ) IE £<-M>' | 
fl 8 n" 

X 7 « (EM ,n-EM„s,n„-siiua+h)-W<-->-> \ M,n)\2. 

(B7) 
Using the formula 

lim(x+u)~ l = P(l/x)—iwd(x) , 

and dropping the 8 terms (high field approximation), 
one gets 

2TT 
— K E M , n - E M ^ \ Y , l V ( * \ V ^ M , n - , M n > / s h o > , \ K (B8) 
fl 8 

Finally, the Pauli equation takes the form: 

dtPM,n;M,n 

2TT 
= S | G C V('s))M,n',Mf,nf\2(pMf

tn
f;M',nf-"PM,n]Mn) 

fl n' s 

Xdl(M'-M)ttuo+EM,n-EM,,n,l 

+ - E I Z [FW,F(-"]^,B ;M,«'A^O|2 

fl n' 8 

X (pM,n'\M,n' — PM,n\M,*)8{EM,n-— EM,n') • ( B 9 ) 

One easily sees that in this approximation and in the 
absence of special initial phase correlations one may 
neglect the contribution of the nondiagonal elements of 
p at time zero, since they always contain at least one 
factor X more then the retained terms. Our equation is 
thus valid when the relations 

'T'collision'NN.'T'dipole-dipole "^ T'dipole Zeeman^N^.^spin-lattice 

hold. 

Discussion of the M a s e r Equation 
The rate of the transitions is determined by the order 

in the perturbation but also by the possibility of con
serving energy. The eigenvalues of 3Cz+F ( 0 ) form a 
band spectrum, one band for each M. The overlap be
tween the different bands depends on the magnitude of 
the external field. For a weak overlap, transitions from 
one band to another (AM =S9^0) are highly improbable 
because the relevant density of states becomes ex
tremely low. On the other hand, the conditions of con
servation of energy is easily fulfilled for transitions 
within the same band (AM = 0 ) . As a result, the relation 
\2/TDZ<0^/TDD holds for high fields. 

Dipole-Dipole Relaxation 

Let us suppose that the external field Ho is such that 
the dipole-dipole relaxation time is much shorter than 
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the Zeeman dipole-dipole relaxation time. In the master 
equation, (B9), one may then neglect the terms in V2 

describing an energy exchange between the two sub
systems, getting a set of separated equations for each M: 

dtPM,n;Mtn=2T/hZ\ElV(°\V^M,n>>.,M,n\2 

n" s 

X.(pM,n''\M,nf' — pM,n;M,n)d(EM,n—-EM,n'') • ( B I O ) 

The system reaches its equilibrium in two steps. The 
first one is governed by the Eqs. (BIO) which describe 
the evolution of the dipole-dipole system to internal 
equilibrium. The characteristic time of these processes is 
in X-4. However, as long as the eigenfunctions and eigen
values of F(0) remain unknown, it is not possible to go 
from (BIO) to a Boltzmann-like equation which should 
give us explicitly the dipole-dipole relaxation time. One 
expects that this time is of the order of (Aw)-1 (Ho/Hi)2. 
It would be most interesting to measure this time, 
setting up experiments in which the distribution of the 
dipole-dipole energy is not a canonical one and to study 
its relation with diffusion processes.17,18 The second step 
in the evolution towards equilibrium is characterized by 
an energy between the Zeeman and dipole-dipole sub
system, it brings the whole spin system to equilibrium, 
this is the Zeeman dipole-dipole relaxation. 

Zeeman Dipole-Dipole Relaxation 

The basic equation describing the variation of the 
Zeeman energy is 

dt(Trp3Cz) 

= fla)o X) MVM,n;M-s,n'(s)VM-s,nf;M,n(~s) 

M,ntn' ,s 

X(2T/*)6(Ex.,-Eit-.,n') 

). (BID 

An estimation of the Zeeman dipole-dipole relaxation 
time has been given by Hartmann and Anderson5 using 
the hypothesis that p is at any time of the form (All). 
We treat this problem as some kind of Brownian motion 
of the collective Zeeman coordinate in the "dipole-
dipole heat bath." Taking the trace of the master equa
tion over the dipole-dipole system we obtain equations 
closely related to the usual Bloch equations, with the 
peculiarity that the temperature of the heat bath varies 
during the process. Let us assume that the diagonal 
elements of p have the form 

PM,n;M,n=0mM;M e x p ( — f o E n ) / T r ( n ) l 

= CTM;M exp(-fr>E„)/g(Jlf), (B12) 

with the normalization 
]£ PM,n;M,n— ]C <?M;M= 1, (B13) 

M ,n M 

17 P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958). 
18 A. G. Redfield, Phys. Rev. 116, 315 (1959), 

and the equilibrium distribution 

<TM; M=g (M) exp (fiDMfua^/ 

Lg(¥)expfeMfoo) . (B14) 
M 

One gets 

^ « 0 ' M ; M = = - - S { 2 r M M S [ o r i ^ ; M — e x p ( —fe^COo) 

XaM+s;M+sg(M)/g(M+s)2}, (B15) 
with 

TMMS= E VM^M+S^'^VM+s>n>',M,n{s) exp(—(3DEn) 
n,tif 

XZWh(M)~]8(EM,n-EM+s,n'+sfio>o). (B16) 

In (B15), PD is still a function of time which is deter
mined by the conservation of the total energy 

(d/dt) TrCp(5Cz+F(0))]=0. (B17) 

In the case of small deviations from equilibrium one may 
look for a solution of the form 

O-M;MW = «(M) exp[j8D(OAr*wo]/Trl. (B18) 

(B15) then gives the equations 

(d/dt)(3z=Z 2TMMSM-1(J3D-PZ) . (B19) 
s 

Remembering that M is very large, that TMMS varies 
slowly with M, and that the relevant values of M are 
practically equal to M, the set (B19) may then be re
placed by a single equation which is the equation written 
by Hartmann, Anderson,5 and Provotorov.6 

(i/rf0i8z=ETr[7W7<-')irft8(£jf in-£M+.,n'+^«o)] 
s 

X(0D-fa)/Ti(Sa*). (B20) 

Let us remark that a large external rotating field can 
always be included in a new unperturbed Hamiltonian 
by means of a unitary transformation. As a result the 
spin systems evolves then towards a canonical distribu
tion in the rotating frame as assumed by Redfield.19 This 
problem shows the importance of the interference 
between external force and collision processes in a 
Boltzmann-like equation. 

Cross Relaxation 

The formalism may easily be extended to treat the 
problem of two or more spin species.20,21 Let us, for 
instance, consider the case of two spin species. The 
Hamiltonian is 

5C=5Cz(l)+5Cz(2)+F^(l)+FW(2) 
+7<°>(1,2)+---. (B21) 

19 A. G. Redfield, Phys. Rev. 98, 1787 (1955). 
20 N. Bloembergen, S. Shapiro, P. S. Pershan, and I. O. Artman, 

Phys. Rev. 114, 445 (1959). 
21 ?. S. Pershan, Phys. Rev. 117, 109 (1960). 
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As in (A9), the sum of the Zeeman terms and of that 
part of the interaction which commutes with them is 
taken as unperturbed Hamiltonian. The basis vectors 
satisfy 

t3Cz(l)+Wz(2)l\MhM2,n) 
= h{Micoi+M2co2) | MhM2,n) , (B22) 

[F(o) ( 1 ) + 7<o) ( 2 ) + Fco) ( l j 2)] | MhM 2,»> 
= EMl,M2,n\MhM2,n). 

The equilibrium properties of such systems are charac
terized by three invariants: the total energy (or the 
dipole-dipole energy) and two magnetic moments (or 
Zeeman energies). The density matrix representing an 
ensemble of such systems is 

PMi,M2,n; M\,M2,n 

= exp(-q+viM1+v2M2-pEM1,M2,n), (B23) 

where the potential q is given by 

q= In Tr exp{ v\M 1+ v<Mi 

-|8IT<0> (1)+ F(0) (2)+ V^ (1,2)]}. (B24) 

The mean angular moments (in units ft) are given by 

Mi=dq/dvi (B25) 

and the chemical potentials by 

fii= (dSt/dMi)s= -T(dS/dMi)Et. (B26) 

When the difference of the Larmor frequencies becomes 
of the order of the linewidth, or more generally when 
ceia;i+G!2U2~Aa> (at being integers close to one) one of 
the invariants is destroyed by the transition caused by 
the Fu )(l ,2) terms of the Hamiltonian. In the situation 
just considered, the two angular momenta are replaced 
by the single invariant combination i f i/ai—If 2/W The 
usefulness of a thermodynamical approach to cross re
laxation has recently been shown by Jeener.7 This 
process is analogous to a chemical reaction in which 
chemical species are destroyed but where the total 
quantity of matter remains constant. Let us introduce 
as in chemical thermodynamics22 the reaction coordi
nate £ and write 

M1(t)=M1(0)+a1d£, 

B%(t)=B2(0)+adZ, (B27) 

dM i/ai= dM2/a2= dl. 

At equilibrium the entropy is maximum and the affinity 
of the reaction is equal to zero: A =aijUi+a2M2=0. The 

2 2 1. Prigogine and R. Defay, Chemical Thermodynamics (Long
mans Green and Company, Inc., New York, 1954). 

final values of ft Mh M2 are determined by the 
equations 

/3(aiho2i+a2fio)2) 
-Mxai Tr 1/Tr (if i2) - M2a2Tv 1/Tr (if 2

2) = 0 , (B28) 
M1/a1+M2/(X2=C, ED+M1fZ0)l+M2ft0)2=Ety 

expressing, respectively, the conditions of chemical 
equilibrium, the condition already expressed by (B27), 
and the conservation of energy. An alternative treat
ment consists in remarking that we now have two 
Zeeman collective coordinates, a linear combination of 
which being coupled to the dipole-dipole system through 
the V{s) terms. This is most easily seen if one rewrites 
the Zeeman Hamiltonian in the form 

3Cz=iC5i(l)/ai+5.(2)/aJ(oift>i+a^0 
+iC5 ,.(l)/ai-5,(2)/aJ(ai«i-a2W2), (B29) 

where that part of the Zeeman Hamiltonian that be
comes coupled to the dipole-dipole system has been 
separated. The problem is now completely analogous to 
the Zeeman dipole-dipole relaxation already studied 
before. One could also say that the collective coordinate, 
Sz(i)/ai+Sg(2)/a2, should now be considered as being 
part of the dipole-dipole heat bath. Let us show that the 
condition of equal temperature for this coordinate and 
the dipole-dipole system is equivalent to the condition 
of chemical equilibrium. Noting that 

j8iS.(l)«i+0A(2)«2 

/'/3iaiwi+j32a20)2\/Sz(l) S8(2)\ 

\ Q!iC0i-)-Q!2W2 / \ Oil OL2 / 

/aiO)i-{-a2U2\ /I3iai0)i—P20i20)2\ 

x( )+( ) 
/5a (1) Sz(2)\/ai0)i—a2Cd2\ 

X( + ) , (B30) 
\ a\ a2 / \ 2 / 

this condition is 

(0io:icoi+j#2a2CO2)/ (aiwi+a**^) = £. (B31) 

Using (A21), j3i==MiTrl/ha)iTr(Mi2)) (B31) becomes 
equivalent to (B28). 
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